
Journal of Approximation Theory 96, 33�45 (1999)

Quasi-Sampling Sets for Analytic Functions in a Cone

Vladimir Logvinenko

Department of Mathematics, Pasadena City College, 1570 E. Colorado Boulevard, Pasadena,
California 91106-2003

and

Alexander Russakovskii

Department of Mathematics, Stanford University,
Stanford, California 94305

E-mail: russakov�msri.org

Communicated by Hans Wallin

Received March 9, 1997; accepted in revised form December 8, 1997

We study analogues of sampling sets for analytic functions in cones of Cn.
Cartwright-type and Bernstein-type theorems, previously known only for functions
of exponential type in Cn, are extended to the case of functions of arbitrary order
in a cone. � 1999 Academic Press

1. INTRODUCTION

We use standard notations of multidimensional complex analysis.
Let C be an open cone in Cn with vertex at the origin. By H(C; \, _) we

denote the class of all functions f holomorphic in C and satisfying the
estimate

lim sup
|z| � �, z # C

log | f (z)|
|z| \ �_, |z| 2=|z1 |2+ } } } +|zn | 2.

By H(C; \, �) we denote �_>0 H(C; \, _).
For entire functions we write simply H(\, _), H(\, �), etc. Thus H(1, _)

is the class of entire functions of exponential type not exceeding _ in Cn.
In 1937, M. Cartwright [C] proved the following theorem:
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Theorem A. The estimate

sup
x # R

| f (x)|�C_ sup
m # Z

| f (m)|

holds for every function f # H(1, _) with _<?. Here the constant C_ # (0, �)
depends only on _.

Below we mention two Cartwright-type results for entire functions of
several variables. We need some definitions first.

Definition. Let E and F be subsets of Rn, E being measurable. The set
E is called dense relative to F, if for some positive constants L and $ and
every x # F

|E & B(x, L)|�$.

Here |A| denotes the Lebesque measure of a (measurable) set A, and
B(x, L) is the ball [ y # Rn : |x& y|<L]. The values of L and $ are called
the density characteristics (of E relative to F ).

Given ' # (0, 1), denote by C(') the cone in the positive hyperoctant Rn
+

defined by the relation

C(')=[x # Rn
+ : min

j=1, ..., n
x j>' max

j=1, ..., n
xj].

Theorem B. (a) Let a set E be dense relative to Rn with density
characteristics L and $. Then the estimate

sup
x # Rn

| f (x)|�eC_Ln+1�$ sup
x # E

| f (x)|

holds for some constant C, any _ # (0, �) and all f # H(1, _).

(b) Let a set E be dense relative to Rn
+ . Then each entire function

f # H(1, �) bounded on E is bounded on C(') for every ' # (0, 1). Moreover,
for each _ # (0, �) there exists a positive constant 2=2(E, _, '), such that
for each entire function f # H(1, _)

sup
x # C(')"B(0, R)

| f (x)|�2 } sup
x # E

| f (x)|

for some R=R( f, ')<�.

Statement (a) is due to B. Ya. Levin [Le]; statement (b) is due to the
first author [L2].
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Definition. Let = be a positive number. A set E/Rn is called an =-net
for a set F/Rn if for every x # F there exists a point y # E such that

|x& y|<=.

Note that =-nets may be discrete sets.

Theorem C [L1, L2]. (a) If _=<?�200 and E is an =-net for Rn, then
the estimate

sup
x # Rn

| f (x)|�
1

1&_=
sup
x # E

| f (x)|

holds for every function f # H(1, _).

(b) Let E be an =-net for Rn
+ , and let a number ' # (0, 1] be given.

Then there exists a positive number _0=_0(n, =, ')>0 such that for every
_ # (0, _0), each function f # H(1, _) bounded on E is bounded on C(').

Moreover, if supx # E | f (x)|>0, there is a positive constant 2=2(E, _, '),
such that

sup
x # C(')"B(0, R)

| f (x)|�2 } sup
x # E

| f (x)|

for some R=R( f, ')<�.

Let B(_) be the subclass of H(1, _) consisting of functions which are
bounded on Rn. A set E/Rn is called a sampling set for B(_) if

sup
x # Rn

| f (x)|�C sup
x # E

| f (x)|, \f # B(_).

Investigation of such sets in one-dimensional case was initiated by
A. Beurling [Beu]. The (a) parts of Theorems B and C give in particular
sufficient conditions on a set E to be a sampling set for B(_) in Cn. The
(b) parts cannot be treated as usual theorems about sampling sets due to
the necessity of cutting off the vertex of C(') which is unavoidable in view
of the examples in [L2]. However, it makes sense to call a set E quasi-sam-
pling if

sup
x # C(')"B(0, R( f ))

| f (x)|�C } sup
x # E

| f (x)|, \f # B(_)

for some R( f )<�.
In this paper we prove the analogues of Theorems B and C for functions

analytic in cones of Cn. It is natural to call theorems of this kind
Cartwright-type theorems.
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It is well known that in many cases the results taking place for entire
functions fail to hold for functions analytic on proper subsets of Cn. Even
when such results are true, they are technically much harder to prove.

In this paper, we make systematical use of the possibility of a ``good''
approximation of a function analytic in a cone by entire functions with
control of growth. In the case of dimension 1 such an approximation was
constructed by M. V. Keldysh [Ke]. For the case of several variables,
the result showing the possibility of such an approximation is due to the
second author [Ru]. To formulate this result we introduce some notations.

Let | and . be plurisubharmonic functions in Cn, both possessing the
``non-oscillating'' property

(u)[1] (z)�&A(&u)[1] (z)+B,

where by u[r](z) we denote sup[u(w) : |z&w|<r], and A, B�0. Assume
also that

.(z)�0, log(1+|z| )=o(.(z)), |z| � �.

For =�0 we denote by 0= the set

0==[z # Cn : |(z)<&=.(z)]

and suppose that

\=1>=2 : inf[ |z1&z2 | : z1 # 0=1
, z2 # Cn"0=2

]>0,

which is a kind of smoothness condition on | and ..

Theorem D [Ru]. Let f be an analytic function in 00 satisfying the
estimate

| f (z)|�Cf eCf .(z), z # 00 .

Then for each =>0 and each N�1 there exists such an entire function g
that

| f (z)&g(z)|�Ce&N.(z), z # 0= ,

|g(z)|�CeC max(N, Cf) } (2�= } |++.)(z), z # Cn,

where C does not depend on N.

Let \ be a positive number and let T\ be the transformation

T\ : (z1 , ..., zn) [ (z1�\
1 , ..., z1�\

n ).
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This transformation obviously maps cones with vertex at the origin onto
cones of the same type and maps Rn

+ onto Rn
+ .

Definition. Let E and F be subsets of Rn
+ , E being measurable. The set

E is said to be dense of order \ relative to F, if T&1
\ (E) is dense relative to

T&1
\ (F ).

Definition. A set E/Rn
+ is called an =-net of order \ for a set F/Rn

if T&1
\ (E) is an =-net for T&1

\ (F ).

Below we formulate our Cartwright-type theorems for functions
holomorphic in cones. Note that we will be able to consider also functions
of order \ different from 1.

For \�1 put W\=[z=(z1 , ..., zn) # Cn: &?�2\<arg zj<?�2\,
j=1, ..., n]. Note that W1=Cn

+ (C+ stands for the right halfplane) and
that Q\ & Rn=Rn

+ for each \.
Our first result is

Theorem 1. Let E be a dense set of order \�1 relative to Rn
+ .

Then for every ' # (0, 1) each function f # H(W\ ; \, �), which is bounded
in a neighborhood of the origin and bounded on E is bounded on C(').

Moreover, for each _ # (0, �) and f # H(W\ ; \, _) there exists a positive
constant 2=2(E, \, _, '), such that

sup
x # C(')"B(0, R)

| f (x)|�2sup
x # E

| f (x)|

for some R=R( f, ')<�.

The corresponding result for =-nets is

Theorem 2. Let E be an =-net of order \�1 for Rn
+ and let a number

' # (0, 1) be given.
Then there exists such a number _0=_0(n, E, \, =, ')>0 that for every

_ # [0, _0), each function f # H(W\ ; \, _) which is bounded near the origin
and bounded on E is bounded on C(').

Moreover, if supx # E | f (x)|>0, there is a positive constant

2=2(E, \, _, =, '),

such that

sup
x # C(')"B(0, R)

| f (x)|�2 } sup
x # E

| f (x)|

for some R=R( f, ')<�.
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Remark 1. The number _0 plays essentially the same role as the
number ? in Cartwright's theorem. The example of the function f (z)=
z V sin(?z) shows that the statement of Theorem 2 (for a fixed =-net) does
not hold for all _.

Remark 2. The (b) parts of Theorems B and C may be reformulated
for an arbitrary cone C/Rn with nonempty interior instead of Rn

+ , since
it is always possible to find such a linear automorphism �: Cn � Cn,
that �(Rn

+)/C, and to consider f (�(z)) instead of f (z) (note that the
order is not affected). Since the image under � of a relatively dense set is
a relatively dense set, and the image of an =-net is an =-net (possibly, with
a different =), the statements of the theorems require only obvious
recalculations of all constants.

Remark 3. The (b) part of the Theorem C and respectively Theorem 2
may be strengthened by assuming the set E to be an =-net not for the whole
Rn

+ but for its relatively dense subset.

Remark 4. To the best of our knowledge, Theorems 1 and 2 are new in
the case \>1 even for entire functions.

Remark 5. There are examples showing sharpness (in a certain sense)
of Theorems B and C; for instance, it was shown [L2] that the results fail
to hold if we do not truncate the cone C(') by the ball B(0, R), and that
the value of R cannot be chosen independent of f # H(1, _), etc. It was
shown also that the cone C('), a proper subcone of Rn

+ , cannot be
replaced, for instance, by a translation of Rn

+ . The same examples with
obvious modifications play a similar role for Theorems 1 and 2.

Next we mention V. Bernstein-type theorems for entire functions of finite
order. By this we mean results giving conditions on sets sufficient for
calculation of the (radial) indicator. Recall that the radial indicator of a
function f # H(\, �) is defined as

hf (z)=lim sup
w � z

lim sup
t � �

log | f (tw)|
t \ .

For the case of dimension 1 the first lim sup (regularization) may be omit-
ted. We refer to [Ro] for the properties of the radial indicator.

V. Bernstein [Ber] was the first to give a sufficient condition on a set E
on a ray which guaranties that

hf (1)= lim sup
t � �, t # E

log | f (t)|
t \ .
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The references to further results in this direction are given in [L3]. We
mention below results of the first author concerning entire functions in Cn.

Definition. Let =(t), t # R+ , be a decreasing function tending to zero
as t � �. A set E/Rn is called an =( )-net for a set F/Rn if for each x # F
there exists y # E such that

|x&y|�=( |x| ).

Definition. A set E/Rn
+ is called an =( )-net of order \ for a set

F/Rn
+ if its preimage under the map T\ is an =( )-net for T&1

\ (F ).

Theorem 4 [L3]. Let a set E be an =( )-net of order \ # (0, �) for some
cone C('0).

Then the relation

hf \ 1

- n
, ...,

1

- n+= lim
' � 0

lim sup
|x| � �, x # E & C(')

log | f (x)|
|x| \

holds for every function f # H(\, �).

Theorem E yields the following uniqueness result.

Theorem F [L3]. Let E be as in Theorem E and let

lim sup
|x| � �, x # E

log | f (x)|
|x| \ =&�

for some function f # H(\, �).
Then f #0.

Our Theorem 3 below is an analogue of Theorem E for functions
holomorphic in cones.

Theorem 3. Let a set E be an =( )-net of order \>0 for some cone
C('0).

Then the relation

hf \ 1

- n
, ...,

1

- n+= lim
' � 0

lim sup
|x| � �, x # E & C(')

log | f (x)|
|x| \

holds for every function f # H(W{ ; \, �), {�1.

Note that while the indicator of an entire function of finite type _ is
bounded below by &_ [Ro], the (regularized) indicator of a function
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holomorphic in a cone needs not to be bounded from below. It can even
be identically &� for a function which is not identically zero. Hence the
corresponding uniqueness result holds only if the cone W{ , in which our
function is defined, is wide enough.

Theorem 4. Let E be as in Theorem 3 with \>1 and let

lim sup
|x| � �, x # E

log | f (x)|
|x| \ =&�

for some function f # H(W{ ; \, �), { # (1, \).
Then f #0.

The idea of most of the proofs in this paper is to approximate a function
holomorphic in a cone by an entire function with the help of Theorem D,
apply the corresponding theorem for entire functions to the approximating
function and derive the required estimates for the initial function. The
transparency of such type of argument should not be confused, however,
with the ``triviality of results.'' The main gain in the ``compilation'' of two
kinds of our known theorems is that we are able to obtain new results, and
not only for functions in cones but also for entire functions. For another
application of the approximation techniques similar to Theorem D, see
[Ru1].

2. SOME REMARKS CONCERNING CONES IN CN

In this paper we will deal mainly with two types of cones in Cn.
One of them, W{ , is defined in the previous section. We introduce

another one.
For t>0 denote by & }&t a norm in Cn given by

&z&t= max
j=1, ..., n { |Re zj |, }Im

zj

t }= .

By Yt('), ' # [0, 1), we denote the cone in Cn given by

Yt(')=[z # Cn
+ : min

j=1, ..., n
Re zj>' &z&t] .

Note that for all t>0 the intersection of Yt(') & Rn
+ is exactly the real cone

C('). Obviously, Ut(0)=Cn
+ .

The geometry of the cone Yt(') is very simple. We just observe that the
ray

l=[!(1, ..., 1), !>0]
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lies on the complex line

L=[z1= } } } =zn]

which has the largest intersection with Yt('):

L & Yt(')={w(1, ..., 1) : w # C, |arg w|<arctan
t
'= .

One easily sees that, given a number {�1, it is possible to choose such
t and ' that

Yt(')/W{

and

L & Yt(')=L & W{ .

We would like to write each of the two types of cones in the form
[z # Cn : u(z)<0] for some plurisubharmonic function u in Cn. In both
cases we can take u to be of order 1:

u(z)= max
j=1, ..., n

(&Re zj)+' &z&t

for Yt('),

u(z)= max
j=1, ..., n { |Im zj |&tan

?
2{

} Re zj=
for W{ .

3. PROOF OF THEOREMS 1 AND 2

Proof of Theorem 1. The idea of the proof is to approximate the
function f by an entire function g with the help of Theorem D, apply
Theorem B(b) to g and derive the required estimates for f.

Let T\ be the transformation mentioned in the Introduction. If f is
holomorphic in W\ and has order \, then f (T\(z)) is holomorphic in
W1=Cn

+ and has order 1.
Thus, in view of the mentioned properties of the transformation T\ , it is

enough to assume \=1 in what follows.
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Put

F=sup
x # E

| f (x)|.

If F=0 then f #0; if F=� then there is nothing to prove. Therefore we
can assume that F # (0, �) and normalize f (z) so that F=e&1.

Next we define functions | and . in the following way. Put

|= max
j=1, ..., n

(&Re zj), .=max(1, &z&t),

where t>0 is arbitrary.
Then the set

00=[z : |(z)<0]

is exactly Cn
+ , and for each ' # (0, 1) the set

0'=[z : |(z)<&'.(z)]

coincides with Yt(') without some neighborhood of the vertex. Besides
that,

0' & Rn
+#C(')"B(0, ').

It is clear that the conditions of Theorem D are satisfied (we can assume
that | f |�Cf eCf. everywhere in 00 , otherwise replace 00 with 0$ for some
small $<'�4, see also Remark 2 following Theorem 2).

Let f (z) be a given function from the class H(W1 ; 1, _). By Theorem D,
there exists an entire function g(z) of exponential type �K_, with
K=K(n, ') not depending on f # H(W1 ; 1, _), such that

| f (z)&g(z)|�e&.(z)�F, z # 0'�2 .

Therefore

sup
x # E & C('�2)"B(0, '�2)

|g(x)|�2F.

Since

E & C('�2)"B(0, '�2)

is dense (of order 1) relative to C('�2), Remark 2 following Theorem 2
implies that

sup
x # C(')

|g(x)|<�,
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and for some 2<� and R<�.

sup
x # C(')"B(0, R)

|g(x)|�2 } sup
x # E & C('�2)"B(0, '�2)

|g(x)|�22F.

Since | f (x)& g(x)|�F on 0'�2 , we obtain the required estimate for our
function f.

The theorem is proved.

Proof of Theorem 2. The proof repeats the proof of the previous
theorem with the only difference that Theorem C(b) is applied instead of
Theorem B(b). Note that if E was an =-net for Rn

+ , then E & C('�2)"
B(0, '�2) would be a 4=-net for C('�2) for any ' # (0, =).

4. PROOF OF THEOREMS 3 AND 4

Proof of Theorem 3. Given a function f analytic in W({) and of order
\, denote hf (1�- n, ..., 1�- n) by Hf and let Hf (E) be the corresponding
limit calculated over the set E. It is obvious that

Hf (E )�Hf

We need to prove the converse.
The way to do this is to use Theorem D to find an entire function

g # H(\, �) with the properties

Hg=Hf

and

Hg(E)=Hf (E )

and use Theorem E for entire functions to prove that

Hg(E )=Hg ,

which yields the desired relation.
First, we can assume that C(')=Rn

+ (otherwise apply a linear trans-
formation � which does not change the order and leaves our set E and
=(R)-net of the same order). Next, as in the previous section, we can
assume that \=1 (apply the transformation T\ otherwise; E becomes then
an =(R)-net of order 1 and W{ becomes W{$ for some {$ which can be
assumed �1).

We consider two cases. Assume first that Hf (E)>&�. Since the multi-
plication of our function by eA(z1+ } } } +zn) does not affect the investigated
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property of the set E, we can always assume that Hf (E)>0. Hence an
entire function g uniformly approximating f in a cone containing the ray
l=[(t, ..., t), t>0] will have the same values of Hg(E) and Hg as f. Thus,
in view of Theorem E, it is enough to construct such a function.

Take N=1, |(z)=maxj=1, ..., n(&Re zj)+'$ &z&t , for such t and '$ that
the cone 00=[z=|(z)<0] is contained in W{ , and take .(z)=max
($, &z&t), $>0. For = # (0, 1&'$) the set 0==[z=|(z)<&=.(z)] which is
Yt('$+=) without a neighborhood of the vertex) has the property

0= & Rn
+#C('$+=)"B(0, =$ ).

Applying Theorem D, we are done.
Now consider the case Hf (E)=&�. We need to prove that Hf=&�.

We choose | and . to be the same as above. Fix some = # (0, 1&') and
denote by gN the entire function of finite type corresponding to the choice
of N�1 in Theorem D. Note that for any such function

HgN
(E )=HgN

.

The entire function gN satisfies | f (z)& gN(z)|<e&N &z&t on 0= , in
particular, on C(=$) for |x| large enough. We have

HgN
�lim

' �

lim sup
|x| � �, x # E & C(')

log( | f (x)|+|gN(x)& f (x)|
|x|

�max(&N, Hf (E ))

=&N,

and

Hf� lim
' � 0

lim
|x| � �, x # C(')

log( |gN(x)|+|gN(x)& f (x)| )
|x|

=max(&N, NgN
)

=&N.

Since N was arbitrary, we conclude that Hf=&�. The theorem is
proved.

Remark. In the case \�1 it is also possible to give another proof of
Theorem 3 based on Theorem 2 (and thus using Theorem D indirectly).

Proof of Theorem 4. Let l=[(t, ..., t), t>0]. The conditions of
Theorem 4 imply that the rays ei(?�2\)l and e&i(?�2\)l both belong to the
cone where our function is holomorphic. From Theorem 3 it follows then
that the plurisubharmonic function Hf (z)=&� on some cone C(')/Rn

+ .
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Since C(') is a non-pluripolar set, Hf (z)=&� where it is defined, in
particular, on the two rays mentioned above. By the properties of the
indicator [Ro, Ch. 3, section 5], f #0.
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